CONT EMPORARY NTROI.S®

Understanding Sedona Core
Components using the
BAScontrol Toolset

Interconnecting Components on Wiresheets to
Create Applications

* Contemporary Controls has developed the BAScontrol Toolset, a free set of
Sedona tools operating on a Windows PC, which includes
 BASemulator — a utility used to emulate controller operation on a Windows PC.

* Sedona Application Editor (SAE) — an editing tool used to create function block (component)
wiresheet applications in the Sedona environment.

* BASbackup — a project utility which provides a convenient way of storing/restoring and
replicating real or emulated controller settings and configurations, as well as Sedona
wiresheet applications.

* For an overview of this toolset, refer to “Introduction to the BAScontrol Toolset.”

* This presentation addresses how to use SAE to place Sedona components that are
deployed in kits onto a wiresheet and then contigured and linked with other
components to create applications.

* The following examples demonstrate using this toolset with the BASemulator;
however, these examples can be implemented on a real Sedona controller.

Getting Started — Launch SAE

. Contemporary Controls Sedona Application Editor 5= 4 x

From SAE: File it Tools Advanced Help
LML CEL LR
1. Click the “Open Connection” icon on | =2
the toolbar.

2. Use address 127.0.0.1 to connect,
unless you specified a different
address when you launched the
BASemulator. This address is always
available in the “Host” drop-down
selection and cannot be deleted.
This is the default address for the
BASemulator.

CCCCCC

3. Enter the Username and Password.
The default credentials are “admin’
fo.r both Username and Password. - ONTROILS

4. Click “OK” to connect. .

)

Understanding the Wiresheet Structure

BB Contemporary Controls Sedona Application Editor - b
File Edit Tools Advanced Help
[(H-]®% som 2was
|~ Navigation Welcome (app(BAs.:ontm\zzJ (sheats(BAs.:ontrowzzj b Property Value
N 1.0(Default App) 2| v iseq
~ Properties Name LSeq
5 W service Meta 437059585
« M sheets Ramp fre Reset & In 3.0
o LSeq func::Ramp hvac::Reset InMin 0.0
~~ [Ram Out 3038 Out 86 69 InMax 100.0
= IF ¢ Min O.O_I—\n 30.38 . . . MNumOuts 9
& by - e The Navigation, Kits
& Reset eriod : 100 InMax 100.0 DOn 0
RampType triangle OutMin 320 . Outl false
OutMax 212.0 LSe
Lot @l and Properties Panes 0w e
in__ outd false
InMin____ SIS b h 1 d d outs false
Iz 1000 can oe niaden or
° ° |Ran [y 12F " - NomOus Quté false
Navigation Pane e R = . oved using th our e
u n u alse
Vin 0 o gy T — Isplayed using the ous fase
Max 100 oz out10 false
Delta 1 R I ft t A th Outll false
Secs T i ert-most iIcon on the out2 foe
Quts false Out13 false
Out6 false, Outl4 false
Ta— tool bar.
OQutd false Out16 false
Qutd false Ol false
> CControls_BASC22 10 owid e
> CCantrols_BASC22_Platform owl . ke
> CControls_BASC22 Web Qut12 false
> CControls_Function Qut13 false
> CControls_Function2 Qut14 false .
5 CControls_ HVAC Out1h false P rO pe rt I e S Pa n e
> CControls_Math Out16 false
> basicSchedule Ol false
> datetimeStd |
> func
v hvac
o7 LSeq[248]
o+ ReheatSeq [628]
& Reset [64B]
F Ttat[52B]
> logic
> math
> pricomp
> sys
> timing
> types
| -

Understanding Components

Components are typically sorted by
function and deployed in kits.

The components discussed in this
presentation can be found in one of the
core kits shown on the right that come
installed with every Sedona controller.

Hvac
components

basicSchedule
datetimeStd
func

hvac

47 LSeq [84B]
47 ReheatSeq [68B]
|~ Reset [64B]
% Tstat [52B]
ogic

math
pricomp

sys

timing

types

|i Contemparary Controls Sedena Application Editer

File Edit Tools Advanced Help
H-2F §OdW PRaAHE

127,001 2

v ccontrols-BASC22-3.1.0(Default App)
v W app
[

v M sheets
£ LSeq
~ IRamp
*
~ Ramp

> CControls BASC22 |0

> CControls BASC22 Platform

> CControls BASC22_Web
ols_Function

> CControls_Function2

Controls_HVAI
> CControls Math

asicSchedu
datetimeStd
> func
O
aF LSeq [848]
o ReheatSeq [628]
|& Reset[648]
= Tetat[526]
> legic

> pricomp

oy

sheets(BAScontrol22) &

Reset

Ramp
func::Ramp hvac::Reset
Out 3038 Out
Min 0.0 _I—\n
Max 100.0 InMin
Period 100 InMax__ -
RampType triangle QutMin
OutMax
IRamp Ry 12F
func::IRamp types:12F
Out 3 In
Min 0 Out
Masx 100
Delta 1
Secs 1

Saving Your Application and Project

* Save to Controller from the SAE e,
* Saves a Sedona binary application file (app.sab.target) to an emulator or a real controller. A - @5
SAB file is only a machine-readable executable file. 127001 22

e Save to PC/Load from PC from the SAE

* Backup/Restore from BASbackup

Saves a Sedona source application file (app.sax) to your PC. A SAX file (also referred to as an
application or App file) is human readable. When saving, you are required to provide a name
for your file. Similarly, “Load from PC” uploads a SAX file from your PC into SAE.

on Editor

Saves configuration files specific to the BAScontrol, BASpi, BASioT, or RTU controller used,
including all the non-Sedona configuration data, such as web page settings and IP address
settings, to a single BAScontrol project file. When saving, you are required to provide a name
for your file. The “Restore” function allows you to copy (clone) the project to a real or

emulated controller. BAS’J“(’(UP

For an more information on saving your application and project, and the
BAScontrol Toolset, refer to “Introduction to the BAScontrol Toolset.”

Load from PC

ConstBo
tvpes: ConstBool

Variable Types

Notice the format of the

Cut

ConstFl
tvpes::ConstFloat

— component output:

L Boolean has true/false

Cut

Constin
types: Constint

”‘”ﬁ\

L

Floats have a decimal point

Cut

(— Integers have no decimal point
0

These are constant components that can be configured. However, they
must be saved, or the settings will be lost.

Configuring Constants

ConstBo
types..ConstBool
Cut falre
- ﬁ Copy Ctrl+C
You can set the value of the constant ' Delete
by right-clicking on the component and Cc e [
the selecting Actions. For the ahﬁ
ConstBool components, your choices (L) start Connection
are True, False or Null. Null is seldom Complete Connection From
used. Cc Actions 3 zetTrue
I::"ﬂi:ﬂ.:.‘.‘?n-iZl...IIII'I.‘?p'[II'II 3 setFalse

setMull

WriteBo
tvpes:WriteBool

Using Write Constants

In

falzse

Cut

WriteFl
tyvpes:WriteFloat

falzse

In

0.0 P

Qut

Writeln
bypes:Writelnt

0.0

In

Dut

In a similar manner, there are write components for
each variable type. Unlike the constant components,
these write components have an input slot. The value
of the input will be saved if the application program
is saved. Other than the input slot difference, the
constant components and the write components
function the same.

WriteBo
types WriteBool

Converting Between Component Types

In

falze

Out

WriteFl
tvpes:WriteFloat

falze

In

7.96

Out

Writeln
types Writelnt

In

Out

true

true

true

falze

false

falze

falze

falze

falze

falze

false

falze

false

falze

falze

falze

falze

Float-to-Integer and Integer-to-Float components exist. Notice that
when we converted from a float to an integer, the Float-to-Integer
component truncated the original value during conversion.

Although it appears that an Integer-to-Float conversion created a
much higher accuracy of the original value, this is not the case. The
ability to convert variable types is necessary because not all Sedona
components exist for each variable type.

You can also convert a float to a binary using the Float-to-Binary
component. However, notice that the resulting 0000 0000 0000
0111 binary representation is actually a decimal 7 and again the
original float value was truncated.

There are no Integer-to-Binary components, but this could be
accommodated by using an Integer-to-Float ahead of the F2B

component.
10

Converting from Float-to-Boolean and

Boolean-to-Float

In this example, we will begin with a float
with a value of 48138.7 and convert it to
binary using a Float-to-Binary
component, and then immediately
convert it back into a float using a
Binary-to-Float component.

Notice the recovered float values are
truncated from their original value.

B2F b
tvpes B2F
Out 43136.0
Count 6.0
In1 falze
In2 falze
In3 falze
Ind true
In5 falze
InG falze
In7 falze
Ing falze
InS falze
In10 falze
In11 true
In12 true
In13 true
In14 true
In15 falze
In16 true

ConstFl []

tvpes: ConziFloat

Out 43138

F2B >
types: FZ2B
s || 48136.7

Cutl falze
Cut2 falze
Cut3 falze
Cutd true:
Outs falze’
Cuts falze
Outy falze
Outd falze
Outs falze
Cut1d falze
Cut true’
Cut12 true’
Cut13 true
Cut14 true:
Out1s falze
Outl1g true
Cherf falze

11

Converting from Float-to-Boolean and
Boolean-to-Float (continued)

ConstFl &
tvpes:.ConstFloat
We increased the float value to 75000, but ot —
this time we have different answers.
. . B2F
Because we are only doing a 16-bit = - types:B2F i
. ! Out 9464.0
conversion, we can only count up to 65535. I T = =
: HIP- H QOutl falze In1 falze
Notice that the Ovrf pin is true, meaning S o = =
there was a counter overflow. The Ovrf pin = oo = 2
means that a value of 65536 or higher was Outs frue = iy
.. Quts true In rue
detected. The remaining counter value, out? true in7 true
. Outd true: Ing true
called the residue, represents a Modulo- o = = —
65536 result of 9464. If you subtract 65536 ou fose o taee
from 75000, you will get 9464. It is Outte s g -
. . Qut13 falze In13 falze
important to monitor the Ovrf flag when O L nt —
ut1s alze’ In15 alse
doing float to binary conversion. outls false in16 Talse

Orrf true < ——

Negating a Boolean Variable — Inverting Your Logic

A Boolean can have either of two states — true or false.
A true can be referred to as a logic 1 and a false as a logic O.

A NotA 1 NotNotA 1

tvpes::ConstBool logic::Mot logic::Not

Out falz Cut tru Out falze
E_I—In fals.z—l—ln true

B NotB 1 NotNotB 1

tvpes::ConstBool logic::Mot logic::Not

COut fal= Cut tru Out falze
E_I—In falsz_l—ln true

There are two Boolean variables A and B which
are set to be false. Both feed a Not component
that is usually called an inverter because it
changes the initial variable to the opposite state,
which it true. Going into another inverter changes
the state back to the original states of A and B.

A NotA 1 NotNotA

tvpes::ConstBool logic::Mot logic::Mot

Out tru Out fals Out true
e_I—In tru :_I—In false

B NotB 1 NotNotB

types::ConstBool lpgic:: Mot lpgic:: Mot

COut falz Out tru Cut falze
E_I—In fals.:_l—ln true

Variable A is now set to be true. Notice in the
second panel the output of the first inverter
changes the value of A to a false, while the
second inverter restores the state of A back to

true. .

Boolean Product — “ANDing” Boolean Variables

A A
tvpes::ConstBool tvpes. . ConstBool
Qut falz g A“dz & Cut true: .Iﬁl.“dz 2
lpgic::And2 logic:.And2
Out falzse Qut falze
o 11| falze et 7] true
B [res—] falze B InZ falze
tvpes::ConstBool tvpes: ConstBool
Cut falg g Out falgge—

The AND component if frequently called an AND gate.

If A is false and B is false, then the output is false.

For an AND gate, If A is true and B is false,
then the output is false.

A A
tvpes: ConstBool tvpes ConstBool
Cut a5 pm— And2 i Out Trig— And2 =
logicAnd2 logic::And2
Out falze Out true
In1 falze In1 true
B [rep———] true B r— 2 true
tvpes::ConztBool tvpes::ConstBool
Out trug=— Ot fryge—

For an AND gate, If A is true and B is true,
then the output is true. e

For an AND gate, If A is false and B is true,
then the output is false.

Boolean Sum — “ORing” Boolean Variables

A
types::ConstBool or2 1]
Out falze lpgic:Or2
Out falze
In1 falze
InZ falze
B
tvpes..ConstBool
Out falze

The OR component if frequently called an OR gate.
If A is false and B is false, then the output is false.

A
types::ConstBool Or2 1]
Cut falge=—= logic:Or?
Out true
(11 1 falze
In2 true
B
tvpes..ConstBool
Cut fripge—

For an OR gate, If A is false and B is true,
then the output is true.

A

tvpes::ConstBool or2 Il
Out true logic:Or2
Cut true
In1 true
[re—r 2 falze
B
types::ConstBool
Cut falze

For an OR gate, If A is true and B is false,
then the output is true.

A
tyvpes::ConstBool Or2 1l
Qut trug=——= logic:0r2
COut true
_ln'] true
In2 true
B
tyvpes. . ConstBool
Qut ripg—

For an OR gate, If A is true and B is true,

then the output is true. L

Creating an Exclusive OR — A OR B but Not Both

ConstBo An Exclusive OR is very similar to an OR
types::ConstBool Xor .
Out BE— | | iouic-Xor gxcept for the condlt-lon when both

:3"1“ f?lse inputs are true. In this case, the output

===\ rue .

ConstB1 ——1In2 true is false. An XOR solves the problem of
types:.ConstBool A or B, but not both.
Out true—

16

Cascading Logic Blocks and Unused Inputs

A
types:ConstBool
Out Tri pe—
B
types::ConstBool Ord
Ot T pe—— logic:Ord
Out

C
types::ConstBool

true

true

Cut

Inz2

frue

false

Ind

false

Or Il

logic:Or2

Out true
| 1] true
| 1 2 false

Notice that two-input OR gates can be used with
three variables by cascading two-input OR gates.

Four-input OR gates
operate the same
allowing more variables
to be added to the logic.

With OR gates, unused
inputs can be left
unconnected because
unused inputs default to
false.

17

Cascading Logic Blocks and Unused Inputs
(continued)

A And2 5 Four-input AND gates
types:ConstBool logic:And2 . .
out T——— Out ie— exists, but unused inputs
o e must be accommodated
by creating a Logicl
B . .
types:ConstBool Andd . constant that is tied to all
Cut tru g e—— logic:Andd 1
= — — - unused AND gate inputs,
I e logic:And2 otherwise the AND gate
! Cut frue
in3 true i true outputs would be
C " - NG - tly disabled
types: ConstBool permanen y ISa €d.
Cut frue
Cascading AND gates are
Logict also a possibility when
Jpes.ConsBell using more than two

variables.
18

Cascading Logic Blocks and Unused Inputs

A @
types::ConstBool
Out trug———

T?J;?gﬁmdd & Here is another way of handling an unused
B P out_ true input when three variables are connected
types::ConstBool | 1) 1 true K
L — = — toa foun.’ input AND gate. Attac.h the

Y true unused input to one of the variables. It
In4 true . .
does not matter which one is used.

C &
types::ConstBool
Out true

19

A
types: ConstBool

Dut

B
types: ConstBool

falze

Cut

Select
types: ConstBool

BSW
logic: :BSWW

Qut

true

|1

falze

true

Cut

InZ

true

true

true

Selecting Boolean, Float or Integer

A two-binary selector switch is used to
enable one variable over another. If the
S1 slot is true, then the value at In2 is
passed to the output of the switch. If S1
is false, then In1 is passed to the output.

20

Selecting Boolean, Float or Integer
(continued)

Bselect Similar in operation to the binary switch (BSW) is the analog
switch (ASW). Instead of Boolean variables, the inputs are
ASW > floats, but the selector (S1) is a Boolean variable. With S1

Afloat [] logic::ASW
types: ConstFloat Out 2.02

out 1 T T set to true, the ASW output selects input 2 (In2), otherwise
Input 1 (In1) is selected. Therefore, the ASW selects one of
s Consrgt two input float options.

Jue
-

— . LI The four-input analog switch (ASW4) is slightly different.
SRR TR i There are four float inputs instead of two as with the ASW.

1.01

3 — The selector slot (Sel) is actually an integer and not a

4.04

Mmetonsten © S g Boolean, thereby allowing the selection of up to four float
inputs. Also, the selection process begins at a particular
— - integer value (StartsAt).

twpes::Constint
ULIt 2—

In this example, the StartsAt slot has a value of 0, meaning
oot congi M that input 1 (Inl) is selected if Sel is 0. Since Sel is 2, the
third input (In3) is selected.

DOut [r———

21

Selecting Boolean, Float or Integer
(continued)

Aint ¢

types:Constint ISW -+
Cut D logic:ISW
;3?11 g The integer switch (ISW) is much like the
—
In2 4 BSW and ASW. The selector is a Boolean,
Bint ® S s but the inputs are integers. The output
types::Constint
oh | remains an mteger.'The logic is the same.
If the selector (S1) is true, then the output
follows In2, otherwise it follows In1.
Bselect
types::ConstBool
Out trige——

22

De-Multiplexing

Aint & Demuxl2 >

types: Constint logic:Demuxl2B4

Cut P e | 2
outt falzse
oute falzse
out3 true
Cutd falze

StartsAt

The de-multiplexer (DemuxI|2) operates on

integer values and provides a linear selection of
the outputs based upon the value of the input. If
the input is O, the first output (Outl) is set to
true. If the input is 2, the third output (Out3) is

set to true.

Afloat L]
tvpes:: ConstFloat ADemux2 <
Qut 315 logic::ADemux2
Out1 25.6
Outz 335
Bselect _£1 i
tvpes::ConstBool =
Ot true:

The analog de-multiplexer has only one input (In)
one selector (S1), and two outputs. When the S1
is false, Outl reflects the input. When S1 is true,
Outl will reflect the input just before the selector
changed state, and Out2 will reflect the
instantaneous value of the input. This component
can be treated as a sample-and-hold detector.

Creating Float Addition

Afloat

tvpes:ConstFloat

Cut

Bfloat

tvpes::ConstFloat

Cut

Dfloat

Cfloat
tvpes:: ConstFloat

COut

types: ConstFloat

Cut

4.5

Add2 +
math: Add2
Out [
In1 15
In2 2.9 Add3 -
math::Add2
Out 12.0
e 11 4.0
Add1 - p——(2 a0
math:.Add2
Clut G.[=—
In1 3.5
In2 4.5
Add4 +
math:.Add4
Out 12.0
In1 15
In2 2.9
In3 3.5
Ind 4.5

The addition (Add)
components are straight
forward. You can
cascade two-input Add
components, or you can
use a four-input Add
component. All inputs
and outputs are floats.

24

Creating Float Subtraction

Sub3 -
math::Sub2
Out 0.0
a1 -1.0
] -1.0

Sub2 -
Afloat [] math::Sub2
tvpes::ConsiFloat Out —1 (e
Out 1.5 In1 15
In2 25
Bfloat []
vpes:.ConstFloat . Sub1 =
Out 2.3 math::SubZ
Out =1 .
In1 35
In2 45
Cfloat L]
tvpes: ConstFloat
Out iy
Sub4 -
math::Subd
Cut 80
Dfloat ® In1 15
tvpes: ConstFloat In2 25
:||4 45

The subtract (Sub)
components are also
easy to work with but
notice that cascading
components do not
yield the same results.
The first input (In1) is
the minuend, and all
other inputs (In2, In3,
In4) are subtrahends
leading to outputs
which represent the
difference.

25

Creating Float Multiplication

Mul3 -
math::Mul2
Clut 59.06
el 1 3.75
by 2 15.75

Afloat ®
types:: ConstFloat
Cut 1.5
Bfloat ®
types:ConstFloat
Cut 25
Cfloat ®
tvpes:ConstFloat
Cut 35
Dfloat ®
tvpes::ConstFloat

Mul2 e
math::Mul2
Cut 3. Ty
In1 15
In2 25
Mul1 -
math::Mul2
Cut 155
In1 35
In2 45
Muld =
math::Muld
Out 59.06
In1 1.5
In2 2.5
In3 35
Ind 45

Similar to addition, float
variables can be
multiplied either by
cascading multiply (Mul)
components or by using
a single larger multiplier
component. All inputs
and outputs are floats.

26

Creating Float Division

Afloat L
S Uz 5 Division is also straight forward.

FT ;g Input 1 (In1) is the dividend, input 2

n - . « .

- 20 (In2) is the divisor, and the output
Bfioat ° ned —— (Out) is the quotient. Dividing by zero
e 2 will result in the pin Div0 being set to

true.

27

Finding Minimums and Maximums

Max N
Afloat > math::Max
tvpes::ConstFloat Cut 3.0
Out 8.0 In1 2.0
InZ 40
Bfloat ®
tvpes: ConstFloat Min ,
Out 4.0 math::Min
Qut 4.0
In1 5.0

—— |

4.0

The Max component output (Out)
reflects the maximum values of the two
input floats (In1, In2), while the Min
component reflects the minimum value
of the two inputs.

28

Finding Minimums and Maximums (continued)

IRamp e 12F T+ MinMax *
func:IRamp tvpes:[2F math::inkax
Out) a MinCut 4.0
Iin Cut 8. MaxCOut 8.0
Max El—I—In 8.0

Delta

R

Secs

==l

To demonstrate this operation, an IRamp was
configured to generate a triangle wave with a
minimum value of 4 and a maximum value of 8.
The MinMax component captured the limits.
Notice the need for an Integer-to-Float converter.

falze

The MinMax component is slightly
more complex. There is only one input
and two outputs. If R is held in the true
state, the two outputs simply reflect
the input state. If R if false, the MinOut
captures the lowest value of the input,
while MaxOut captures the maximum
of the input. When connecting the
component for the first time you
should reset the component.

29

Afloat
tvpes: :ConstFloat

Cut

Bfloat
tvpes::ConstFloat

Rounding Off Floats

Cut

Cfloat
tvpes::ConstFloat

Out

Diloat
tvpes::ConstFloat

Cut

Add2
math::Add2

Cut

4.0

6.0

Round L
math::Round
Out L
DecimalPlaces 0
i i s
® Neg —
math::Neq
4 Qut —t] [
®
FloatOf +
3.0 math::FloatOffeet
Out 8.2
®

-4.0

Using the Round component, you can
round-off the value of a float to the
closest integer value, but the output
will remain a float.

Using the Neg component, you can
append a minus sign to a float with the
output remaining a float.

The FloatOf component appends an
offset value to the output. It is not
necessary to use a constant component
for establishing the offset amount. The
offset amount can be configured within

the FloatOf component.
30

Averaging Successive Readings

IRamp o 12F > Avg10 A
func:IRamp types:l2F math:Avg10

Qut] [tmts| 1 10 Cut 55
Min 0 out 10 (s 1y 10.0
Max 10 MaxTime 0
Delta 1

Secs 1

The Avgl0 components averages the last ten input values and sends the result to
the output. To demonstrate this, an IRamp is configured to create a triangle wave
with a minimum value of 0 and a maximum value of 10. Increments are set to 1.
When the IRamp reaches 10, the Avgl0 component would have averaged 10, 9, 8,
7,6,5,4,3, 2,1 for a value of 5, which appears in the output.

31

Averaging Successive Readings (continued)

In this example, three averaging
components are compared. The
Avg10 averages over ten samples,
but the data must change to
trigger a new sample. The AvgN
component can be configured for
the number of samples, but it
samples every scan and not just on
a change in value. The TimeAvg
averages over a fixed period of
time which is configurable. The
output does not change until all
samples are obtained.

math::Avg10

55

10

IRamp R 12F
func:IRamp types:I2F
Out] (s)

Min 0 Cut

Iax 10

Delta 1

Secs

1

10.0

10.0

AvgN

math:: &g

Cut

9.75

In

10.0

MumSamplesToAvg

Feset

TimeAvg

math:: TimeAvg

Cut

==l

Time

false

32

ConstBo
types:ConstBool

Creating On-Delays and Off-Delays

Cut

DlyCn
timing::DIlyOn

Cut

false

frue

DelayTime

10.0

Hold

DIyOff
timing::DIyOf

4797

Ot

frue

true

DelayTime

10.0

Hold

The DlyOn component is an on-delay timer which
begins timing on the false to true transition of the
input. Once the time (as shown is the Hold slot) goes
to 0, the output will become true. This delay time is
configurable. In this example, the delay timer is still
timing after the input when true 4.8 seconds ago.

The Dlyoff component operates the same except it is
triggered by a true to false transition of the input.

33

Creating On-Delays and Off-Delays (continued)

ConstBo
types:ConsiBool

Cut

DlyOn
timing::DlyCn

Cut

false

false

DelayTime

10.0

Hald

DlyOff
timing::CHyOfF

Cut

true

false

DelayTime

10.0

Hald

4203

In this example, the input to the two timers
made a true to false transition six seconds
ago. The DlyOn components had
immediately transitioned from true to false
with the input, but the DIyOff timer is still
timing. In another four seconds its output
will become false.

34

ConstBo
types:ConstBool

Ot

Constln
types::Constint

iy

Ot

Timer
timing:Timer

Using the Timer

Cut

true

run

e T T

G0

Left

5]

49

The timer component will count down from
a predetermined amount when the Run
input is true. A constant integer component
was used to set the time, although the Timer
component can be internally configured. The
output will remain true during timing and
transition false upon completion or if the
Run input goes false. To begin a new timing
period, the Run input must be cycled.

35

Using One-Shots — Mono-Stable Multivibrators

ConstBo
types:ConstBool

Cut

ConstFl
types:ConstFloat

L —

Ot

ConstB1
types:;:ConstBoal

5 5——PulseWidth

OneShot

timing::OneShot

Cut

false

true

5.6

e 0= 1§ 4114]

Cut

TickTec
func:TickTock

fal g pe—

T,

Cut

B2P
logic:B2P

false

Ot

false

TicksPersec

.1

false

The OneShot provides a single pulse of determined value
upon the false to true transition of the input signal. The
output immediately goes true on its input’s false to true
transition, and then returns to false when timing is
complete. The PulseWidth can be configured or externally
programmed as shown. A retriggerable one-shot will renew
timing if the input transitions from true to false to true
during the timing period. A non-retriggerable will not.
Notice that the PulseWidth is a float.

The Boolean-to-Pulse (B2P) converter is actually a very
simple single-shot in that it outputs a true for only one scan
time when its input goes from false to true. There are no
time settings. It is used when a pulse is required after

detection of an event instead of a logic level. .

Creating Ramps — A-Stable Multivibrators

Constin &
types:Constint
Dut i V—
IRamp
func:IRamp
Constl1 ® Out 5
types:Constint i) -5
e B 11 [1
Secs 1
Constl2]
types:Constint
Chut 1

The IRamp provides a triangular output
ranging from Min to Max with increments of
Delta. These paraments can be configured or
programmed as shown. The time increment
must be configured having the units of
seconds. Notice that all the configurable
settings are integers, as is the output.

37

Creating Ramps — A-Stable Multivibrators
(continued)

ConstFl L

tvpes: ConstFloat

Out 10.0 L
The Ramp is similar to the IRamp, but
the Ramp has mostly float settings and

ConstF1 ° Ham — a float output. The output of the Ramp

e o T —— o o can be configured or programmed for

L e either a sawtooth or triangle wave.
Period 100 Increasing the period slows down the
RampType sawtooth

ConstF2 = speed of the Ramp within the limits of

tvpes::ConstFioat . .

Out 100.0——— Min and Max. Notice that although the
Period is a float, the input to Period
will be rounded to the nearest integer.

ConstBo
tyvpes: ConstBool
Cut Talg grm—

38

Ramp
func::Ramp

Sarte,

Ot

T4 37—

Min

0.0

Max

100.0

Period

10

RampType

ConstFl
types::ConstFloat

sawtooth

Comparing Two Floats

Cmpr
func::Cmpr

gy

true

rey

false

Ky

false

—,

72.34

Y

Ot

50.0—

50.0

The Comparator component (Cmpr) compares the
X input to that of the Y input. If X is less that Y, then
the Xly output is true. If X equals Y, then Xey is
true. If X is greater than Y, then Xgy is true. Both
inputs are floats, and the outputs are Booleans. In
this example, the output of the Ramp is compared
to that of a constant. Using the default values of
the Ramp, the input X varies as a triangle between
0 and 100 every 10 seconds. You can watch how
the comparator outputs change over this range.

39

Creating a Simple Clock — the Tick Toc

TickToc i Freq LY
func:TickTock func::Freq

Out truge—— Pps 1
TicksPerSec 1 Ppm 60

| 1] true

The TickToc component provides a convenient clock from 1 to 10 pulses per
second. However, because the controller scan time and other processing
overhead, it is recommended to use its default value of 1 second. More
accurate timing is available from a real-time clock.

The Freq components can provide output values in pulses-per-second (Pps)
or pulses-per-minute (Ppm). Because of the low-speed nature of these two
components, the Ppm calculation will probably be the most useful.

40

TickToc b

Introducing Counters

Count
func:: Count

func: TickTock Ot 33
Out true In e
TicksPerSec 1 Presat 0
Dir up
Enable e
R false
ConstBo
types::ConstBool
Ot b
ConstB1
types -ConstBoal
Out false
UpDn Y
ConstB2 func:-UpOn
| types::ConstBoal Out 330
Out false— O false
=i true
——L falze
e D falze
Limit 100.0
ConstF1 F=HaldALimit frua
 types: ConstFloat
Out 100.0————

ConstB3
types: ConstBool

Dt

tue—

There are two counters. Count is an up/down counter
with an integer output. It must be enabled to count. It
can be reset to 0 or preset.

UpDn is an up/down counter with a programable
direction input (C Dwn) which can also be configured.
Although counters are inherently integer devices, the
output of this component is a float. In this example, a
limit of 100 has been programmed. Once the limit is
hit, the overflow bit (Ovr) will be set. If HoldAtLimit is
true, the counter will not go past 100. If it is false, the
counter will continue to count past the limit, but the
overflow bit will remain set. Resetting the counter
returns the component to the start position while
clearing the counter and overflow bit. "

Ramp

Operating on Real-World Sighals —
Hysteresis and Limiting

Sarta

func:Ramp
ot 63.74
Min 0.0
Max 100.0
Feriod 10
RampType triangle
ConstF1 ®
types:ConstFloat
Out 400
ConstFl P
types: ConstFloat
Ot 60.0

Hystere 1]
func:Hysteresis
In 65.0
Out true
RisingEdge 60.0
FallingEdge 40.0
Limiter
func::Limiter
Cut 60.0
In 65.0
LowlLmt 40.0
HighLmt 60.0

The hysteresis component (Hystere) has
separate rising-edge and falling-edge trip
points when setting a trigger on a float
variable. It is ideal for creating a digital event
from a real-world analog input. Its output is
Boolean.

The Limiter component restricts the range of
a float variable by outputting a float that does
not exceed the configurable low-limit
(LowLmt) or high-limit (HighLmt). The Limiter
only limits the range of its output and does
not scale the input float.

42

Handling Non-Linear Signals

The Linearize component (Lineari)
operates on a float input and creates a
piece-wise linear representation of a
non-linear input (such as a
thermistor), or it can create a non-
linear piece-wise representation of a
linear input. There is complete
flexibility in the defining the ten XY
coordinates along the output curve.

The component determines the
approximate output between the ten
coordinates using linear interpolation.

IRamp s 12F 3
func::IRamp types::I2F

Out L 9
Min 0 Ot 9.0
Max 100

Delta 1

Secs

1

Lineari
func::Lineanze

Ot

61.0

In

8.0

X0

0.0

Y0

0.0

by

1.0

hlll

1.0

X2

2.0

Y2

4.0

A3

3.0

Y3

9.0

4

4.0

4

16.0

A5

5.0

Yh

250

KB

6.0

Y6

36.0

AT

7.0

A

439.0

Ao

8.0

b

65.0

A9

9.0

Y

51.0

a3

Property
~ Lineari
MName
Meta
Out
In
X0
Y0
X1
Y1
X2
Y2
X3
Y3
X4
Y4
X5
¥5
X6
Y6
X7
Y7
X8
Y8
X9
Y9

Handling Non-Linear Signals (continued)

Value

Lineari
504168449

57.0
7.5
0.0
0.0
1.0
1.0
20
4.0
30
9.0
4.0
16.0
5.0
25.0
6.0
36.0
7.0
49.0
8.0
64.0
9.0
81.0

In this example, we will do the reverse of what is commonly done. We will
use a linear input and create a non-linear output that approximates the
equation Y=X*X over the range of X values from 0 to 9. We need to input
corresponding values of Y that obey the desired equation. To make it easy we
will use integer values, but this is not a restriction. For example, the square
of 4 is 16, and the square of 5 is 25. We enter the X values as an independent
variable and then the Y values as the dependent variable. We need to be
careful that the input does not exceed 9 in this example because we do not
define a corresponding value for Y above 9.

You can test the interpolation by entering a value for X in the In slot,
assuming not link is connected to the Linearize component. This is done here.
Notice that the result is 56.5 for an input value of 7.5. The correct value
would have been 56.25, which is very close.

44

Creating a Simple Set-Reset Flip Flop — Bi-Stable

Multivibrator

ConstBo
types::ConstBool SRLatch)
Out true—— func::SRLatch
QOut true
——5 true
—R false
ConstB1
types::ConstBool
Qut false——

On the rare condition that both S and R
transition from false-to-true during the
same logic scan, R will take precedence
because its state is tested last in the logic,
and therefore the output will be false.

The SRLatch appears to be a straight-
forward logic block. The output would
become true if the set (S) pin is high and
would go low if the reset (R) pin goes high.
However, both the S and R pins are positive
leading-edge sensitive. Regardless of their
steady-state condition, the output (Out) will
only change on the false-to-true transition
of either input. If this occurs on the S pin,
the output goes high and will remain high
until the R pin does its transition.

45

ConstFl
types::ConstFloat

Creating the Loop Component —
Basic Analog Controller

Out

SpaceTp
types::WriteFloat

72.0—

LP
func::LP

Enable

Sp

Cv

Out

Kp

Ki

Kd

In

25—

Out

725

Max

Min

Bias

MaxDelta

The LP or loop component is one of the
most complex components. It can provide
three modes of control P-proportional, I-
integral, and D-derivative. In this example,
we will assume a temperature loop with a
setpoint (Sp) of 72 degrees and a
controlled variable (Cv) currently as 72.5
degrees which is the space temperature
that we want to control.

46

Property
~ LP

Name

Meta

Enable

Sp

Cv

Out

Kp

Ki

Kd

Max

Min

Bias

MaxDelta

Direct

ExTime

Creating the Loop Component —

Value

LP
269090817
true
72.0
72.5
0.5

true
1000

Bias only applied to
proportional-only (P) control.
When using a Pl controller, reset-
windup can be minimized by
limiting the output range.

Basic PID Controller

Enable must be configured true, otherwise there is no control.

Kp is the proportional gain which defaults to 1. Notice that the error signal is
Cv-Sp or 0.5. The error multiplied by the proportional gain of 1 yields an
output of 0.5. If the Ki and Kd factors are used, their contributions are also
multiplied by the proportional gain factor. Ki is the integral gain in units of
resets per minute. It is multiplied by the error signal. Kd is the derivation gain
in seconds, and it is also multiplied by the error signal.

Min and Max are the limits of the output signal. They can be set to any value.
Bias can offset the output regardless of the error. MaxDelta sets the rate of
change of the output within the output limits. This will slow the output
swing.

For a cooling application, set Direct to true. For heating, set it to false. The
loop equation is solved each execute time (ExTime) in milliseconds.
47

Creating a Linear Sequencer — Bar-Graph
Representation of a Float

LSeq -
hvac:LSeq
InKin 0.0
Inilax 100.0
IRamp e I2F *
func:IHamp types:[2F NumQOuts g
Min 0 Out 8.0 DOn T
Max 100 Cut1 true
Delta 1 Cut2 true
Secs 1 Dut3 true
Outd true
Outs true
Quts true
Quty true
Outd falze
CutS falze

Qut10

falze

Cut™

falze

Qut12

falze

Qutld

falze

Qut14

falze

Qut15

falze

Qut16

falze

Ol

falze

The linear sequencer (Lseq) provides a
digital representation of an input float
similar in operation to a bar graph on
audio equipment. It is easier to
understand its operation using an
integer input. There are 16 possible
Boolean outputs plus one overflow
(Ovfl) flag. The input ramp provides a
triangle wave from 0 to 100. The
sequencer was configured fora 0
minimum input and 100 maximum
input. The maximum number of
outputs was configured for 9, yielding
a Delta of 10.

48

Property
~ LSeq
Mame
Meta
In
InMin
InMax
MNumOuts
Delta
DOn
Out1
Out2
Out3
Out4
Outs
Outb
Out?
Out8
Out9
Out10
Out11
Outl2
Out13
Out14
Out15
Outlé
Ovfl

Creating a Linear Sequencer — Bar-Graph
Representation of a Float (continued)

Value

LSeq

470351873

60.0
0.0
100.0
9
10.0
6
true
true
true
true
true
true
false
false
false
false
false
false
false
false
false
false
false

The range of the linear sequencer is configured using InMin at the low
end and InMax at the high end. Selecting the number of outputs
(NumOuts) determines the difference (Delta) between successive
outputs turning on. In this case, the range is 100, and the number of
desired outputs is 9. Divide 100 by NumOuts +1, and you will get a Delta
of 10.

You will notice that the input (In) is at 60, and D On is indicating that six
outputs are on. With an input between 0-9, there are no outputs on, but
once you hit a decade such as 10, 20 on up to 90, successive outputs will
come on. At the maximum of 100, nine outputs will come on. If the input
exceeds the maximum intended, the overflow flag will set, but the
number of outputs will remain as specified by NumOuts.

49

Creating a Reheat Sequencer —
Four Staged Outputs from a Float Input

Ramp e
func:Ramp
Out 22
Kin 0.0
Max 100.0
Period 100
RampType triangle

e ——

Reheat$§ -
hvac::ReheatSeq
Cut? true
Out2 true
Outd falze
Cut2 falze
265
Enable true
DOn 2
Hysteresis 0.25
Threshold1 1.0
Threshold2 2.0
Threshold3 3.0
Threshold4 4.0

The reheat sequencer (ReheatS) provides a
linear sequence of up to four outputs based
upon their input float (In). The threshold for the
four outputs can be configured for increasing
values of the input. As the input increases to
each threshold, the corresponding output will
go on. As the input decreases below the
threshold, the corresponding output will remain
on until the hysteresis value is exceeded.

50

Creating a Reheat Sequencer —
Four Staged Outputs from a Float Input (continued)

ey elee Enable must be set to true, otherwise the outputs will be false.
Mame ReheatS
Meta 352780289
o e There are four possible threshold settings corresponding to four
Out3 true outputs. As the input signal increases to each threshold, its
Out4 false . . .
In 287 corresponding output goes on and stays on until the input drops
e e below the threshold plus the value of the hysteresis.
Hysteresis 0.25
Threshold1 1.0
Treste e i The input signal is decreasing, but it has not exceeded the amount of
Threshold4 40 the threshold, so output 3 (Out3) remains set. Once the signal is

below 2.75, output 3 will go off.

51

Reset — Scaling a Float Input Between Two Limits

Ramp Reset 54
func::Ramp hvac:Heset
Cut 282 Clut 82.84
Min I:I-.‘I;—I—In 28.24
Max 100.0 Inklin 0.0
Period 100 Iniax 100.0
RampType triangle Cluthlin 32.0
Cuthax 212.0
Property Value
~ Reset
Mame Reset
Meta 336003073
Out 80.09
In 26.71
InMin 0.0
InMax 100.0
OutMin 32.0
OutMax 212.0

The Reset component (Reset) will scale the output
linearly between two limits. The input ranges must
be configured by setting InMin and InMax. The
corresponding output for those two points must be
configured as OutMin and OutMax. If the input
signal exceeds the defined input range, the output
will be clamped to one of the two output limits.

In this example, we are converting degrees Celsius to
degrees Fahrenheit within the O - 100-degree Celsius
range. Therefore, we set OutMin an OutMax to the
corresponding Fahrenheit values. All Celsius input
values between these two limits will be interpolated
thereby providing the correct Fahrenheit values.

52

types:ConstFloat

Setting Tstat —
Basic On/Off Temperature Controller

types:WriteFloat

®
Tstat T
T2 [y hvac: Tstat
Diff 1.0
IsHeating frue
—S T2.0
et 1.4
- Cut true
Faize frue
T e

Lower false

714

The Tstat is an on/off temperature controller
for either heating or cooling. For heating
configure, the IsHeating is set to true. The
deadband can be set by the Diff value. If the
controlled variable (Cv) deviates from the
setpoint (Sp) by half the Diff value, the output
(Out) will become true and stay set until Cv
deviates from the setpoint by a like amount in
the other direction. In this way, Diff also
provide hysteresis. The Raise and Lower
outputs are a function of the IsHeating
setting. If Is heating is true, Out=Lower,
otherwise Out=Raise.

53

Setting the Real-Time Clock and Scheduling

DateTim B

datetimeStd::Date TimeServiceStd Daily Sc T Daily S1 L Th D T

Manos 679082238000000000 basicSchedule:DailyScheduleBool b basicSchedule:DailyScheduleFloat B e Datelim

Hour | Starti 0:0 Starti 0:0 component

s =il Dur 0:0 Dur 0:0 _ _

Second 19 Start? 00 Start? 00 provides real-time

Yedl 2 Dur? 0:0 Dur2 0:0 : :

Month 7 oy = Val 0.0 information. There

Day 8 Val? false Val? 0.0 . d |

DayOfVoek ! DefVal false Defval 0.0 IS no need to place
CROAN Out false Out 0.0 . .

OsUtcOffset false it on the wiresheet.

Tz

However, if you need specific information from the component for the driving logic, you can connect to
the various integer outputs, such as Hour, Minute and Second.

There are two schedule components which have different output types. One is for Boolean, and the other
is for float. There is no need to connect the DateTim component to either of the schedulers. Each
scheduler can handle two events over the 24-hour period by configuring the time and duration of each
event. The output of each schedule will change with each event. If more events or more outputs are

needed, multiple schedulers can be placed on the wiresheet. -

Property
s Daily51

Mame
heta
Startl
Durl
Start?2
Durd
Wall
Wal2
Drefyal
Cut

Setting the Real-Time Clock and Scheduling

637796353

Yalue

Daily51

200X

0.0

[12:00 Y

0
0.0
0.0
0.0
0.0

(continued)

Configuration of the two scheduler components is similar.
For the float version, Vall and Val2 need to be specified
along with the start times (Startl and Start2) and the
durations (Durl and Dur2). The output (Out) will assert
either Vall and Val2 during the scheduled times. If neither
are programmed, the DefVal should be configured.

55

Creating Priority Arrays

Priorit
pricomp::PrioritizedBool
Sourcelevel in16

OwerrideExpTime 0

In1 null

In2 null

In3 null

Ind null

InS null

InG null

ConstBo In7 —
tvpes:.ConstBool na —
Cut Nl 9 —
|11 O null

In11 null

In12 null

In13 null

In14 null

ConstB1 In15 null
twpes::ConstBool E‘—I—In‘lﬁ- true
Ot tru Fallback null
Cut true

MinActiveTime 0

MinlnactiveTime: 0

Priority array (Priorit) components exist for Boolean, float and
integer values. Up to 16 levels of priority from In1 to In16 can
be assigned. In1 has the highest priority and In16 the lowest. If
a priority level is not assigned, it is marked as a Null and
therefore ignored. If a Null is inputted to priority array as
shown in this example, the priority array will ignore it and
choose the next in line input. The Boolean version of the
priority array has two timer settings — one for minimum active
time and one for minimum inactive time. If the highest priority
device changes from false to true and then back to false, the
priority component will maintain the event for the configured
times.

Creating Priority Arrays (continued)

ConstFl
tvpes::ConstFloat

Cut

ConstF1
tvpes: ConstFloat

Priori1

pricomp:; PrigritizedFloat
SourcelLevel in10
OverrideExpTime 0
In1 null
In2 null
In3 null
In4 null
InS null
Ing null
In¥ null
Ing null
= ng nul
s | L1111 5.0
In11 null
In12 null
In13 null
In14 null

In1s null

In1§ 6.0

Cut

 Hem

Fallback null

Out 3.0

Priori2
pricemp:; Prioritizedint

SourcelLevel ins

OverrideExpTime 0

In1 min

In2 min

Constin [] 3 —
tvpes: Constint In: —
Out 25 i L
Ing min

In7 miin

In& min

Constl1 [] In% min
tvpes: Constint In10 25
Out 35 In11 min
In12 min

In13 min

In14 min

Consti2 . i -
twpes:: Constint In18 33
Out] Fallback min
Chut 1

There is a fallback setting in each priority array that can be specified. If no valid
priority input exists, the Fallback value is transferred to the output. The
OverrideExpTime guards against the possibility of an indefinite override condition.

Creating Priority Arrays (continued)

Prior#

pricor Co

Sourci Py

Overri Delete

In1

InZ Paste

In3

::: | E | Start Connection
Ing Complete Connection From
In¥

Ing Actions

In% nun
=In10 null
In11 null
In12 null
In13 null
In14 null
In15 null
=In1& true

null

Ctrl+C

Ctrl+V

emergencySetictive
emergencySetinactive
emergencyfuto
manual5etActive
manual>etinactive

manual&uto

When you right-click on the priority
component and select Actions, you will
have several choices for overriding the
current priority selection made by the
component. The override choices vary
depending on the type of variable
supported by the priority component.
In this example, the Priority Boolean
was selected. Setting an override using
a tool is only temporary. Eventually,
the component will time out and
revert to normal priority selection.

58

Thank You

Learn more at
WWW.ccontrols.com

	Understanding Sedona Core Components using the BAScontrol Toolset
	Interconnecting Components on Wiresheets to Create Applications
	Getting Started – Launch SAE
	Understanding the Wiresheet Structure
	Understanding Components
	Saving Your Application and Project
	Variable Types
	Configuring Constants
	Using Write Constants
	Converting Between Component Types
	Converting from Float-to-Boolean and Boolean-to-Float
	Converting from Float-to-Boolean and Boolean-to-Float (continued)
	Negating a Boolean Variable — Inverting Your Logic
	Boolean Product — “ANDing” Boolean Variables
	Boolean Sum — “ORing” Boolean Variables
	Creating an Exclusive OR — A OR B but Not Both
	Cascading Logic Blocks and Unused Inputs
	Cascading Logic Blocks and Unused Inputs (continued)
	Cascading Logic Blocks and Unused Inputs (continued)
	Selecting Boolean, Float or Integer
	Selecting Boolean, Float or Integer �(continued)
	Selecting Boolean, Float or Integer �(continued)
	De-Multiplexing
	Creating Float Addition
	Creating Float Subtraction
	Creating Float Multiplication
	Creating Float Division
	Finding Minimums and Maximums
	Finding Minimums and Maximums (continued)
	Rounding Off Floats
	Averaging Successive Readings
	Averaging Successive Readings (continued)
	Creating On-Delays and Off-Delays
	Creating On-Delays and Off-Delays (continued)
	Using the Timer
	Using One-Shots — Mono-Stable Multivibrators
	Creating Ramps — A-Stable Multivibrators
	Creating Ramps — A-Stable Multivibrators (continued)
	Comparing Two Floats
	Creating a Simple Clock — the Tick Toc
	Introducing Counters
	Operating on Real-World Signals — Hysteresis and Limiting
	Handling Non-Linear Signals
	Handling Non-Linear Signals (continued)
	Creating a Simple Set-Reset Flip Flop — Bi-Stable Multivibrator
	Creating the Loop Component — Basic Analog Controller
	Creating the Loop Component — Basic PID Controller
	Creating a Linear Sequencer — Bar-Graph Representation of a Float
	Creating a Linear Sequencer — Bar-Graph Representation of a Float (continued)
	Creating a Reheat Sequencer — Four Staged Outputs from a Float Input
	Creating a Reheat Sequencer — Four Staged Outputs from a Float Input (continued)
	Reset — Scaling a Float Input Between Two Limits
	Setting Tstat — Basic On/Off Temperature Controller
	Setting the Real-Time Clock and Scheduling
	Setting the Real-Time Clock and Scheduling (continued)
	Creating Priority Arrays
	Creating Priority Arrays (continued)
	Creating Priority Arrays (continued)
	Slide Number 59

