p

g

&

4

Sedona Framework — Best
Opportunity for Open Control EAXI-IID%
Introduction
JAN30-FEB 1
Zachary Netsov, lAS VEGAS

Product Specialist, Sedona Alliance 2017 »-:m)
A

The Need for Open Controllers

= When we mention open controllers we immediately think of BACnet,
but BACnet is only a protocol and does not address control

= Even with BACnet compliance, a system integrator is not assured
access to a BACnet site

« The programming language may be proprietary to the controller manufacturer

« The programming tool may only be available to the controller manufacturer’s sales
channel

Therefore, an open protocol like BACnet
is necessary for an open controller but it
is not sufficient

Four Traits of an Open Controller

= Utilizes an open protocol for network communications
 BACnet is an ISO standard with international acceptance

= Utilizes an open programming language for implementing control
strategies
- Sedona Framework is open source, and due to its similarity to Niagara Framework it
Is familiar to many integrators
= Utilizes a programming tool available without restriction
« Those without access to Niagara Workbench can use Sedona Application Editor from
Contemporary Controls or Sedona tools from others
= Fosters a community of developers and integrators that share
technology for the public good

* A Sedona community of developers and integrators exist using the resources at
SedonaDev.org and the Sedona Alliance

Open Protocol for Network
Communications — BACnet

= BACnet - a communications protocol for Building Automation and
Control Networks

= Intended to provide “interoperability” among different vendor’s
equipment

= Frees the building owner of being dependent upon one vendor for
system expansion

= Allows BAS devices to be modeled such that they are “network
viewable”

= BACnet devices are modeled using an object-oriented structure of ...

» Objects o, |
9BACnet
« Services

Open Programming Language for
Control — Sedona

= The Sedona language is similar to Java or C# allowing developers the
opportunity to create custom components

= These components can be assembled into applications by non-
programmers using simple graphical methods

= A Sedona Virtual Machine (SVM) on the Sedona device executes the
application program

= Sedona applications can be made to be portable to other Sedona
devices

= Sedona is open source — there are no royalties or commercial licenses
required to develop and use Sedona components

Creating Applications by Linking
Components

Plus2 + Offs
math::FloatOifset math::FloatOffset
Out 2 ASW = LP ° Ot 7.0—%
In 0.0 Ingic: ASW func:LP In 20
Offzet 20 Out al Enable true Offset 50
e]] ol g—I—SD 20
[r—(n2 4.0 Cv 0.0
Hystere iy
Plus4 + st i Em ?.D func::Hysteresis
math:FlostOffset 2 = 'n 20
Out 20— Ki 0.0 put true—1
In 0.0 Kd 0.0 RisingEdge 0.5
Offset a0 Max 5.0 FalingEdge 05
Min -5.0
Bi 0.0
MaxDelia 0.0
Direct false
ExTime 1000
uc1
OneMin < CControls BASC20 10:UC1 HtRunH
func: Cmpr Initialized true math::Div2
Xoy true | Count 115602 Out 1926.7—#
D
Set50 P Xey false gu$ntF 11 56[:2 In1 115602.0
tvpes:: ConstFloat Ky false—L i i In2 60.0
Out 5, X 50.0 Clk false Divi false
s 18.0 #=—Enable trug
Rst false
COwn falze
12F7 b Limit 0
ltvpes BF . HoldAtLimit Talse
#=0n 18
Out 18
DivBy60 L
types..ConstFloat
Out 60.0——

Using a drag-and-drop methodology, Sedona components are placed onto a wire sheet, configured, and
linked together to create an application. Once placed on the wire sheet, components immediately
begin execution thereby allowing for application debugging in real-time. 6

Open-Source Sedona Framework

= Originally developed by Tridium as a software framework for
embedded controllers operating with less than 100kB of memory, the
technology is accessible from the SedonaDev.Org web site

= Tridium owns the trademark Sedona Framework!™ but the technology
is available to the public licensed under the Academic Free License
version 3.0 with numerous products in existance

= The public has the right to use, develop and sell products based upon
the Sedona Framework without royalties or commercial licenses but
should acknowledge the copyright owner along with stating that the
product was built on the Sedona Framework!™ Built on

Sedona

FRAMEWORK™

Programming Tool Available without
| Restriction — Sedona Applications Editor

= For those without access to Niagara Workbench, the Sedona
Application Editor (SAE) is available free via download from the
Contemporary Controls website

= Includes a Sedona virtual machine (SVM-PC) that runs on a PC that
can be programmed with the SAE for testing

. Contemporary Controls Sedona Application Editor =)

= Includes Tridium-Release kits and components | &5 woas

elcome &2

= Can be used with other Sedona devices as COMTEMPORARYCO) RO
long as the proper platforms, kits and
manifests are installed

=

= Intended for the Sedona community

Fosters a Community of Developers
and Integrators

= The Sedona community consists of developers and integrators

= A developer is a skilled software professional or manufacturer who
can

+ Create custom components beyond the standard components from Tridium — some of
which can be shared with others

- Can modify the sample Sedona Virtual Machine to meet the hardware requirements
of the target Sedona device

- Can develop software tools for editing Sedona applications

= The integrator is a non-programmer with knowledge of control
applications

- Can assemble components onto a wire sheet to create a control strategy meeting a
defined Sequence of Operation

- May share with other integrators proven applications to benefit all integrators

How are Sedona HVAC applications
produced?

—

Developer

A Kit is a container of
like components

And21 &
logic::And2
Qut or2 M
:221_ logic::Or2
P;ﬂ Not2
Nl | logic:Not
In2
Out Xor
In logic::Xor
Out false

In1 false
In2 false

Sedona Controller

Sedona Application _

System Integrator

2

Sedona Applications consist of
interconnected components

What is the Role of the Developer?

= A Sedona developer is either a hardware
manufacturer or a software developer

= Physical hardware such as CPU, memory and |/O
need to be designed

= The Sedona Virtual Machine must be modified to
accommodate the hardware platform

= Custom kits called hardware-dependent kits
need to be developed that support the native
functions of the platform

il -

= Once all elements are put together you will have
a Sedona device awaiting an application

11

RNl \What is a Sedona Virtual Machine?

y

= A Sedona Virtual Machine (SVM) is a small
portable fast interpreter that can reside
on most any hardware platform or

operating system while executing the
same Sedona application

B SVM-PC = | B &

= The original Tridium SVM has been
modified by developers to run on limited

hlockSize:
refSize: 4

Hunning SUM in Platform Mode
—— MESSAGE [=zys::Appl starting

resource microcontrollers, Linux =i e e
p|atforms and powerful WindOWS - MESSAGE [web::WehService] started port-§088
4

workstations
This SVM runs on a Windows PC

= Intended to operate over IP networks

12

SVMs for Raspberry Pi Extensions

To demonstrate the portability of Sedona, the
original Tridium platform implementation for
Raspberry Pi has been adapted to both GrovePi
and PiFace.

1
—
———
e
———
—-
-
—
———
e
o
Rl
-
-
-

.. JP

)

{
3

13

What Is the Role of the System
Integrator?

= The system integrator translates the required ‘
sequence of operation (SOO) into a Sedona
application that executes the sequence

= Applications are created by extracting
components from kits, placing them onto a wire
sheet, configuring the components if necessary,

and interconnecting the components with links

= Because of the system integrators’ knowledge,
the S| recommends to the developer any custom
components that need to be developed that can
be shared by all

14

aa=til \What is the Difference Between Sedona
Kits and Components?

= Components are the fundamental building blocks for creating
applications

= However, components are deployed into a Sedona device in a
container called a kit

= Similar types of components are assigned to kits with relevant names
such as Math, Logic, HVAC and so on.

= There are three types of kits

 QOriginal Sedona 1.2 kits provided by Tridium available to all
- Custom hardware-independent kits by Sedona developers that can be shared
« Custom hardware-dependent kits by Sedona developers that cannot be shared

= The spirit of the Sedona Community is to share kits if possible

15

Sl Tridium-Release Kits

= With the Sedona 1.2 release, Tridium restructured their Control kit into
several smaller manageable kits which we call the Tridium-release kits

= [t is recommend that they not be modified from their release form so
that they can be shared by the community

basicSchedule math
datetimeSTD pricomp
func Sys

hvac timing
logic types

There are 69 unique components in these kits

16

3 Tridium Time and Schedule Kits —
datetimeSTD, basicSchedule

The Scheduling Group DailyScheduleBool Daily Schedule Boolean — two-period Boolean scheduler

scheduling operations DailyScheduleFloat Daily Schedule Float — two-period float scheduler
based on time of day DateTimeServiceSTD Time of Day — time, day, month, year
DateTim DailySc Daily 51
datetimeStd: DateTimeServiceStd bagzicSchedule::DailyScheduleBool bazicSchedule::DailvScheduleFloat
MNanos 538011125000000000 Start 0:0 Startt 0:0
Hour 23 Dur 00 Durl 0:0
Minute 32 Start2 0 Start2 0:0
Second 5 Dur2 0:0 Dur2 0:0
Year 2017 all falze Vall 0.0
Manth i Valz2 falze “alZ 0.0
Day 17 Defval falze DefVal 0.0
Day0OfWeek 2 Out falze Qut 0.0
UtcOffzet]
OsltcOffset falze

Tz

AHR

Tridium Function Kit = func

Cmpr Comparison math — comparison (<=>) of two floats

Count Integer counter — up/down counter with integer output

Freq Pulse frequency — calculates the input pulse frequency

Hysteresis Hysteresis — setting on/off trip points to an input variable

IRamp IRamp — generates a repeating triangular wave with an integer output

The Function Group
convenient functions for
developing control schemes

Limiter Limiter — Restricts output within upper and lower bounds

Linearize Linearize — piecewise linearization of a float

LP LP — proportional, integral, derivative (PID) loop controller

Ramp Ramp — generates a repeating triangular or sawtooth wave with a float output
SRLatch Set/Reset Latch — single-bit data storage

TickToc Ticking clock — an astable oscillator used as a time base

UpDn Float counter — up/down counter with float output
Cmpr < Count - Lineari Ky Hystere iy IRamp LP []
func::Cmpr func::Count func::Linearize func::Hysteresis func::IRamp func:LP
Kay false Out 0 Out null In 0.0 Out 69 Enable true
Hey true In falze In 0.0 Out false Min 0 Sp 0.0
Kby false Preset 0 X0 0.0 RisingEdge 50.0 Max 100 Cv 0
X 0.0 Dir up 0 0.0 FalingEdge 50.0 Delta 1 Out 0.0
h 0.0 Enable false X1 0.0 Secs 1 Kp 1
R false 1 0.0 Ki 0
Limiter ~ Y2 g funciSHLatch TickToc | Max 100
func::Limiter Ramp Y 00 Out false | func: TickTock Win 2
Out 0.0 | func:Ramp 3 00 S false Out false Bias 1
in 0.0 Out 847 o, & R false TicksPerSec 1 faxDeta 0
LowLmt 0.0 Win 0.0 -
= 0.0 Direct true
ighEs . Max 1000 x5 0.0 UpDn N ExTime 1000
Pesion - iy 3] 0.0 _func:UpDn

Freq - RampType triangle XE 0.0 Out 0.0
func:Freq i 0.0 Owr false
Pps 0 X7 gn In false
Ppm 0 Y7 0.0 Rst false
In false X8 0.0 CDwn false

Va 0.0 Limit 0.0

xg 0.0 HoldAtLimit false

Yo 0.0

3l Tridium HVAC Kit = hvac

LSeq Linear Sequencer — bar graph representation of input value
The Hv.Ac ?]l'oup ReheatSeq Reheat sequence — linear sequence up to four outputs
fopﬁ_ratlons ; atl Reset Reset — output scales an input range between two limits
SEEE GO Tstat Thermostat — on/off temperature controller

InKlin

falze

0.0 Out2 IzsHeating falze
Inkax 100.0 Out3 falze Sp 0.0
MNumQuts 16 Out4 falze Cv 0.0
Delta 5.60 In 0.0 Cut falze
0On] Enable falze Raize falze
Cut1 false 0Cn 0 Lower falze
Out2 falze Hysterezis 0.0
Out3 falze Threshold1 0.0
Out4 falze Threshold2 0.0
Outs falze Threshold3 0.0
Outs falze Threshold4 0.0
Outy falze
Qutd falze
Quts false
Out10 falze
Outn1 falze
Out12 falze
Out13 falze
Cut14 falze
Out1s falze
Cut1s false
Ovwfl falze

AHR

Tridium Logic Kit —logic

ADemux2 Analog Demux — Single-input, two-output analog de-multiplexer

And2 Two-input Boolean product — two-input AND gate
And4 Four-input Boolean product — four-input AND gate
ASW Analog switch — selection between two float variables
The Logic Group ASW4 Analog switch — se_lectlon between four fI(_)ats _
logical operations usin B2P Binary to pulse — simple mono-stable oscillator (single-shot)
g P _ g BSW Boolean switch — selection between two Boolean variables
Boolean variables Demuxi2B4 Four-output Demux — integer to Boolean de-multiplexer
ISW Integer switch — selection between two integer variables
Not Not — inverts the state of a Boolean
or2 Two-input Boolean sum — two-input OR gate
Oor4 Four-input Boolean sum — four-input OR gate
Xor Two-input exclusive Boolean sum — two-input XOR gate
ADemux?2 £ ASW4 i And4 & Demuxl2 ¥ 15w ¥ Or2 Il
logic:: Alemux2 logic:: ASWE logic:And4 logic:: DemuxI?B4 logic::1SW logic::Or2
Qut1 0.0 Qut 0.0 Qut falze In 0 Qut 0 Qut falze
Qut2 0.0 In1 0.0 In1 falze Qut1 true In1 0 In1 falze
In 0.0 In2 0.0 In2 falze Qut2 falze In2 0 In2 falze
51 falze In3 0.0 In3 falze Qut3 falze 51 falze
In4 0.0 In4 falze Qut4 falze
StartsAt 0 StartsAt 0 Not g
ASW > Zel 0 Ord T logic::Mot
logic:: AW ESW - logic:Ord Out true
Qut 0.0 logic: BEW And?2 m Qut falze In falze
In1 0.0 B2P N, Qut falze logic:: And? In1 falze
In2 0.0 | jogicoBoP in1 false Out false 2 e [%er @
51 false Out falze In2 false In1 falze In3 false logic::¥or
In falke S falge InZ falke In4 falke ot falze
In1 falze
In2 falze

20

AHR

Tridium Math Kit = math

Add2 Two-input addition — results in the addition of two floats
Add4 Four-input addition — results in the addition of four floats

Avg10 Average of 10 — sums the last ten floats and divides by ten to provide a running average

AvgN Average of N— sums the last N floats and divides by N to provide a running average

The Math Div2 Divide two —results in the division of two float variables
Group FloatOffset Float offset — float shifted by a fixed amount
th-based Max Maximum selector — selects the greater of two inputs
matn- aset Min Minimum selector — selects the lesser of two inputs
components MinMax Min/Max detector — records both the maximum and minimum values of a float
Mul2 Multiply two — results in the multiplication of two floats
Mul4 Multiply four — results in the multiplication of four floats
Neg Negate — changes the sign of a float
Round Round —rounds a float to the nearest N places
Sub2 Subtract two — results in the subtraction of two floats
Sub4 Subtract four — results in the subtraction of four floats
TimeAvg Time average — average value of float over time
Add2 + Avg10 A Div2 * Muld " Min * FloatOf + AvgH ¥
math::Add2 math::Awgi0 math::Div2 math::Muld math::Min math::FloatO ffset math::Avgh
Out 0.0 Out null Cut 0.0 Out 0.0 Out 0.0 Out 0.0 Out 0.0
In1 0.0 In 0.0 Ini 0.0 Ini 0.0 Ini 0.0 In 0.0 In 0.0
In2 0.0 MaxTime 0 In2 0.0 In2 0.0 In2 0.0 Offset 0.0 NumSamplesToAvg 5
Diwld trug In3 0.0 Reset falze
Ind 0.0 x
MinMax Y Mul2 Max * | Timehvg n
math::Winkax math::Mul2 Sub2? = math::Wax math: TimeAwvg Subd =
KinQut 0.0 Out 0.0 | math: Sub2 Add4 = Qut 0.0 Out 0.0 | math: Subd
MaxOut 0.0 In1 0.0 Out 0.0 | math-Adds In 0.0 In 0.0 Qut 0.0
In 0.0 In2 0.0 Ini 0.0 Out 0.0 In2 0.0 Time 10000 |nd 0.0
R falze In2 0.0 In1 0.0 In2 0.0
In2 0.0 In3 0.0
Round L] Neq -
i o math::Round math::Neg = s
In4 00 out 0 Out 0.0
In 0 In 0.0
DecimalPlaces 0

21

AHR

Tridium Priority Kit — pricomp

The Priority Group PrioritizedBool Prioritized Boolean output — highest of sixteen outputs
prioritizing actions of Boolean, PrioritizedFloat Prioritized float output — highest of sixteen outputs

Float and Integer variables Prioritizedint Prioritized integer output — highest of sixteen outputs
Priorit Priori1 Priori2
pricoemp:; PrioritizedBool pricomp:: PrioritizedFloat pricomp:: Prioritizedint
Sourcelevel falloack Sourcelevel falloack Sourcelevel falloack
OverrideExpTime] OverrideExpTime] OverrideExpTime]
In1 null In1 null In1 min
In2 null In2 null In2 min
In3 null In3 null In3 rriin
In4 null In4 null In4 min
InS null InS null InS min
InG null Ing null Ing min
In¥ null In¥ null In¥ min
Ing null Ing null Ing min
InS null InS null InS min
In10 null In10 null In10 min
In11 null In11 null In11 min
In12 null In12 null In12 rriin
In13 null In13 null In13 min
In14 null In14 null In14 min
n15 null In15 null In15 min
In16 null In1& null In1& min
Fallback null Fallback null Fallback min
Out null Out null Out min
MinActiveTime]

MinlnactiveTime]

AHR

The System Group

platform and fol
components

der

Folder
sys. Folder

Tridium System Kit — sys

PlatformService Platform service — indicates platform and available memory

Folder Folder — when accessed opens to another wire sheet
RateFolder Rate Folder — a folder that can be used for background tasks
n RateFol n Platfor =
sys RateFolder svs. PlatformService
AppCyclesToSkip i Platformid ceontrolz-BASC22-3.1.0
PlatformWer BAScontrol 2.0.1
Mem&vwvailable S024

23

AHR

Tridium Timing Kit —timing

DlyOff Off delay timer — time delay from a “true” to “false” transition of the input
The Timing Group DilyOn On delay timer — time delay from an “false” to “true” transition of the input
time-based components OneShot Single Shot — provides an adjustable pulse width to an input transition

Timer Timer — countdown timer

DiyOff *, DiyOn *, OneShot L Timer i

timing: D0 1 timing:: 0N timing::OneShot timing::Timer

Cut falze Cut falze Cut falze Cut falze

In falze In falze In falze Fun stop

DelayTime 0.0 DelayTime 0.0 PulzeWidth 0.0 Time]

Hold] Hold] CanRetrig falze Left]

24

AHR

nasal Tridium Types Kit —types

B2F Binary to float encoder — 16-bit binary to float conversion
ConstBool Boolean constant — a predefined Boolean value
ConstFloat Float constant — a predefined float variable

Constint Integer constant — a predefined integer variable
Th\zrgsijef;?jup F2B Float to _binary decoder —_float to 16-bit bi_nary conversion
conversion between types F2l Float to integer —_float to integer conversion

I12F Integer to float — integer to float conversion

L2F Long to float — long integer to float conversion

WriteBool \Write Boolean — setting a writable Boolean value
WriteFloat \Write Float — setting a writable float value

Writeint Write integer — setting an integer value

ConstBo ConstFl ® Constin L] B2F > F2B > F2
tvpes::ConstBool tvpes::ConstFloat tvpes::Constint tvpes::B2F tvpes:.F2B tvpes: F2I
Cut falze Cut 0.0 Cut 0 Out 0.0 In 0.0 In

Count 0.0 Cut1 falze Cut

In1 falze Qutz falze
WriteBo WriteF! . Writeln a i B =
types: WriteBool types WriteFloat types: Writelnt = = = = I12F
n e n 0o n 0 Ind falze Outs falze types: IOF
Out false Out 0.0 Out g s false Outb fake |,

In& falze Out? falze Out

In7 falze Outd falze

Ing falze Outs falze

In9 falze Cut10 falze

In10 falze Outn falze L2F

In11 false Qut12 false types:| 2F

In12 falke Out13 falke In

In13 falke Out14 falke Out

In14 falze Out1s falze

In15 falze Out1s falze

In16 falze Ovrf falze

Custom Hardware — Independent Kits
Developer Supplied

= All non-Tridium-Release kits are called custom kits

= Custom kits that operate independent of specific hardware are called
hardware-independent kits

= Unlike Tridium-release kits, custom kits must be identified by their
developer

= |t is encouraged that custom hardware-independent kits be shared by
the Sedona community

There are numerous custom kits and components from
the Sedona community

26

Custom Hardware — Independent Kit

Function — CControls Function

Cand2 Two-input Boolean product — two-input AND/NAND gate with complementary outputs
Cand4 Four-input Boolean product — four-input AND/NAND gate with complementary outputs
Cand6 Six-input Boolean product — six-input AND/NAND gate with complementary outputs
Cand8 FEight-input Boolean product — eight-input AND/NAND gate with complementary outputs
Custom Cmt Comment —comment field up to 64 characters
Functions Cor2 Two-input Boolean sum — two-input OR/NOR gate with complementary outputs
_ Cord Four-input Boolean sum — four-input OR/NOR gate with complementary outputs
collection of Cor6 Six-input Boolean sum — six-input OR/NOR gate with complementary outputs
helpful Cor8 Eight-input Boolean sum — eight-input OR/NOR gate with complementary outputs
components CtoF °C to °F — Celsius to Fahrenheit temperature conversion
Dff “D” Flip-Flop — D-style edge-triggered single-bit storage
FtoC °F to °C — Fahrenheit to Celsius temperature conversion
HLpre High-Low Preset — defined logical true and false states
PsychrE Psychrometric Calculator — English units
PsychrS Psychrometric Calculator — Sl units
SCLatch Set/Clear Latch — level-triggered single-bit data storage
SClLatch * Cand2 & Cand4 & Cand6 & Cand®g 2 Psychrk * CtoF ke
CControls Function::SCLatch CControls Function::Cand2 CControls Function::Candd CControls Function::Candé CControls Function::Cand8 CControls_Function::PsychrE CControls Function::CtoF
Set falze Inp1 false Inp1 false Inp1 false Inp1 falze InTempDegF 0.0 InTempDegC 0.0
Clear falze Inp2 falze Inp2 falze Inp2 falge Inp2 falze InRelativeHumidityPet 0.0 OuiTempDegF 32.0
Out falge Out falze Inp3 falze Inp3 falge Inp3 falge OutDewPointDegF 0.0
OutMot true OutNot true Inpd false Inpd false Inpd false OutEnthalpyBtu_per |b 0.0
Ot false InpS false InpS false OutSatPressure_psi 0.0 Eltjprtel Funchionetil
Outhot true Inp6 false InpS false OutVaporPressure psi 0.0 M
Cmt i & Corg _ I Out false Inp7 false OutWetBulbTempDegr ~ =
CControls Function::Crmt CControls Function::Cord Dutot true Inps =l
Comment Inp1 falze Coré i ot Talse
Inp2 false coontrols Function:Cord Outhot true | Psychrs = Dff
inp3 false inp1 T8 | Cora I CControls Function::PsychrS CControls Function::Dff
FtoC 5 Inp4 false |np2 f8l8€ | coontrols Function:-Cord InTempDegC 0.0 Preset false
CControle Function:Fto - InpS false Inp3 falze Inp1 false [cor2 .| InRelativeHumidityPct 0.0 Resst false
InTempDegF 0.0 Ines false Inpd false inp2 BEE | CConirois Funches e OutDewPaintDegC 00 D false
OufTempDeqC 1777 net false InpS falke Inp3 false hpt fale OutEnthalpy kJ_per kg 00 Ck false
Inp& false |nps false Inps false |np2 false OutSatPressure kPa 0.0 Out false
Out false Qut false Out false Dut falge OufVaporPressure_kPa 0.0 Outhot true
Outhlot true Qutnot true Quthiot true Quthot frus OutWetBulbTempDegC 0.0

This custom kit was
developed by
Contemporary Controls

27

AHR

il Custom Hardware — Independent Kit
HVAC Kit — CControls HVAC

AnaHiLo Analog High/Low — analog variable out-of-range limit or detection
AntiSCY Anti-Short Cycle — minimum run time and minimum start time limiter

Custom BTUh BTU/Hour Calculator — calculates energy usage based on temperature difference and flow
HVAC NumbDamp Numeric Dampener — digital filter dampens amplitude and rate changes
advanced HVAC EnhPID Enhanced PID Loop Controller — same as LP component except with better output control
components LeadLag Lead Lag Sequence Controller — lead/lag control for up to four devices
OATrueB Outside Air True Blend — percentage of outside air based on OAT, MAT and RAT
RnProof Run Proving — verifies that a commanded device indeed executes
TockTic Period Driven Clock — similar to TickToc component but with period control
AnaHilLo >, EnhPID ® Leadlag * | NumDamp * | BTUh * | RnProof * OATrueB N
CControle HWAC::AnaHilLo CControle HWVAC:EnhPIDx CControle HVAC:: L eadlag CControls HWAC::NumDamp CControls HWAC::BTUR CControls HWAC::RnProof CControlz HWAC: QATrueB
LimitDelay 1 Enable true RunTime 10 Updatelnterval 3 ExeDelay 0 ProofDelay 1 ExeDelay 1
HiLimnit 10 5Sp 0.0 ProofDelay 1 Riselncrement 0.5 OffCal 0.0 In false OffCal 0.0
LoLimit -10 Cv 0 OwverlapTime 0 FalDecrement 0.5 InGPM 0.0 Proof false OutsideAT 0.0
Differential 01 Out 0.0 OutCty Two RizeDampinhibit falze InTemp 0.0 Out falze ReturnAT 0.0
Hold AtLimit falze Kp 1 In falze FallDampinhibit falze OutTemp 0.0 OutMot true MixedAT 0.0
LimitOutEnable falze Ki 0 Quta falze In 0.0 Cut 0.0 Fail falze Output 0.0
In 0 Kd 0 QutB falze Out 0.0 TonOutR 0.0 Faillnhibit falze Fault true
Cut 0 HMax 100 OutC falze TonQutC 0.0
OwerLimit falze Win 0 QutD falze
UnderLimit falzse Bias 0 Proofé false ANtiSCY *
MaxDelta 0 ProofB falge _CControls HWVAC:ARHSCY TockTic : :
aaxh —1 [l = WnRunTime 1 cocnr e This custom kit was
: WinQffTime 1 Period 1.0
ExTime 1000 ProofD falze
Froof —m e Eoave = developed by
u dlze Cut true
o — Contemporary Controls

28

.\

Custom Hardware — Independent Kit
Math Kit — CControls Math

Custom MATH Add Add two with cc_)nflgura}ble mqus —results in th_e addition of tvyo floats
q f. bl Sub Subtract two with configurable inputs — results in the subtraction of two floats
accommo iifoeu(t:;m igurabie Mul Multiply two with configurable inputs — results in the multiplication of two floats

Div Divide two with configurable inputs — results in the division of two float variables

Add + Sub - Mul - Div +
CControls Math: Add CControls Math::Sub CControls Wath::KMul CControls Wath::Div
Inp1 0.0 Inp1 0.0 Inp1 0.0 Inp1 0.0
Inp2 0.0 Inp2 0.0 Inp2 0.0 Inp2 0.0
Qut 0.0 Qut 0.0 Qut 0.0 Qut 0.0
D0 true

This custom kit was
developed by
Contemporary Controls

29

AHR

Hardware — Dependent Components
BAScontrol20

AO1-AO4 Analog output — analog output voltage point

e e Y@“:o;« Bi1-Bl4 Binary input — binary input point
& BO1-BO4 Binary output— binary output point
Ui1-UI8 Universal input — binary, analog, thermistor, resistance or accumulator
ScanTim Scan time monitor— records the min, max and average scan times
. UC1-UC4 Retentive universal counters — up/down retentive counters
el VTO01-VT24 Virtual points — share wire sheet data with BACnet/IP clients

WCO01-WC48 \Web components — share wire sheet data with controller web pages

@ eccoec0as ocsecsaco

UG I uc4 VTa WCo1 ScanTim
CControle BASCZ0 10-UE CControle BASCZ0 10:UC4 CControle BASCZ0 10:VWTOES CControle BASCI0 Web WCO CControlz BASCZ0 10::ScanTim
ChnType Input10V Initialized true Initialized true WcType Input SampleSize 10
QutF 0.00 Count 0 ChnType Fleatinput Minval 0.0 TimeMs 44
QutB falze CountF 0.0 Reset falze Max\al 100.0 Minimumils 43
Qutl] Owf true Floaty 0.0 Flitvfal 0.0 Maximumhl=s 45
Clk falze BinaryV falze Intwal] Averageis 43
Enable true WireSheet InputTo Binval falze Reset falze
Rt falze
AD4 CDwin falze
CControl= BASCZD 10:A04 Limit 0 Bld BO?2 plat
InpF 00 odALLmi fase _CControls BASCZ0 10:5M4 CControls BASC20 10:B02 CControls BASC20 Platform:BASC20PlatformService
Enable true OutB true InpB falze Platformid ccontrols-BASC20-3.1.0
Enable true PlatformVer BAScontrol 2.0.1
Memavailable 19560

Hardware-dependent components cannot be

shared because they use native functions. 20

Hardware — Dependent Component for
the Metz DIO 4/2 MS/TP |/O Module

Devinstance -1
Inp1Use NotUsed
Inp2Use NotUsed
Inp3Use NotUsed
InpéUse NotUsed
Out1Use NotUsed
Out1Priority 10
Out2Use NotUsed
Out2Priority 10
Inp1 false
Inp2 false
Inp3 false
Inpd false
Out1 false
Relinquish1 false
Out2 false
Relinquish2 false
Status NotConfigured

A custom component can be made to drive a remote |/0
module from a BACnet client controller over MS/TP.

AHR

aAl Hardware — Dependent Component for
the RIBMW?24B-44 MS/TP I/O Module

MW24B -
CControls RIB:M

Devinstance -1

Inp1Use NotUsed

Inp2Use NotUsed

Inp3Use NotUsed

Inp4Use NotUsed

Out1Use NotUsed

Out1Priority 10

Out2Use NotUsed

Out2Priority 10

Out3Use NotUsed

Out3Priority 10

OutéUse NotUsed

Qut4Priority 10

Inp1 false

Inp2 false » _ : | iiah
o i - 1 E e s
Inp4 false = ‘,i“ "_': = -‘. -, 1-¥220591081VH S£20S 3106 LVH
Out1 false :

Relinquish1 false

Out2 false

Relinquish2 false

Out3 false

Relinguish3 false

Qut4 false

i o Although BACnet compliance is not necessary with
Status NotConfigured

Sedona, the combination can be advantageous.

AHR

Navigation

Sedona Tool

Sedona Application Editor (SAE)

Pane

Kits

Pane

Properties

“ Contemporary Controls Sedona Application Editor ‘:'
File Edit Tools Advanced Help
. I P
- Wy @dw
100.0.249 52 Welcome app service(BAScontrol20) sheet(BAScontrol20) Sched{BAScontrol20) Heating(BAScontrol20) &2 [Property Value
4 ccontrols-BASC20-3.1.0(Demo Box) - Al s
a4 M app” Mame LP
;M service Plus2 E Meta 503709697
o M sheet math::FloatOffset Enable true
Out 2.0~
L | ASW > LP
aF Ui = In 0.0 - L 5p 20
L] Llogic::ASW func:LP
4= UB Offset 20 Out ZD—I_Enable Cv 0.0
2L Ul ———in 20 sp Out 20
m - ImE : i
4 BR2 Plus4 . == - Ki 0.0
2L g math::Float0fset Kip Kd 0.0
Out 40— =
P |y —_——
> B BM In 0.0 Kd 0.0 " RisingFdge 05 Masc 30
IF BO1 Offset a0 r.|§x 5.0 FalingEdge 05 Min -5.0
3F BO2 Min et |] Bias 0.0
Bias. 0.0 <
JL B3 MaxDelta 00 <
i MaxDetta 0.0
3F BO4 Direct =] D\re.ct false
aF AOL W e S h t ExTime 1000 ExTime 1000
= A2] re ee 4 Offs
JE A3 Mame Offs
4L AQ4 - Meta 528128001
F Out 1.0
uc1 I 20
- CControls_BASC20_10 OneMin - CControle BASC20 10:UC1 HtRunH * = .
» CControls_BASC20_Platform func:Cmpr Initialized frue math::Div2 Offset 5.0
» CControls_BASC20_Web Xgy true Count 113047 Out 1884 11= 4 Hystere
» CControls_Function Set50 . Xey false |~ Countf MSELET in1 113047.0 Name Hystere
. basicSchedule Ltvpes-Constloat Xy =) Ovi] in2 G Meta 688521217
X Out Ry —) 50.0 Clk false Divl false I 20
> datetimeStd Y 7.0 ¥=Enable true n .
> func Rst falsa Out true
> hvac CDwn false RisingEdge 0.5
» logic 12F7] * Limit 0 FallingEdge 05
") math s HoldAtLim Tale
s ma i DivBy60 °
> pricomp Out 8 types:ConstFlost
» sys Out 60.
> timing
> types
.
-
Useable for any Sedona 1.2 device as long as the proper platform
. o . .
kits and manifests are installed. Free to the Sedona community.
>l [T 3
Kits bl | | L’J Properties .~ Links| Slots

Pane

33

Example HVAC Application
Adding an Economizer to an RTU

= With Sedona you have a freely-programmable controller that is
capable of implementing several HVAC applications.
« Multi-stage heating/cooling rooftop unit (RTU) with economizer
« Air-handing unit (AHU) with analog heating/cooling valves
» Fan-coll unit (FCU)
« Make-up air unit (MAU)
* Energy Recovery Ventilation (ERV) unit
= [n this example a 22-point Sedona controller was installed during an
RTU retrofit of an economizer requiring the installation of mixed-air
and outside air sensors

= By having a BACnet compliant controller, performance of the
economizer was easy to monitor with a BACnet client

34

AHR

ﬂork

of an

72151 -
ZN_TEMP I DecimalPlaces i 230.0
CControls BASCZ? 10:UH
Initialized true Y_limT P
ChnType Thrnt OKT3 types::ConstFloat
OutF T2 5 Qut 230, [
OutB alse e .
CControls Function::Cmt

Outl 72 Comment O=LocalZnSensor, 1=BAS/Network ZnS
Reset false
ZNT_MNET ZNT_SEL DlyOn2 *
CControls BASCZZ 10:WTO2 CControls BASCZZ2 Web WC16 timing::DhyCin
Initialized true WcType Input Out falze
ChnType Floatinput MinVal 0.0 In falze
Reseat falze Max\al 100.0 DelayTime 5.0
Float\w 0. [l Fit\fa 0.0 Hold 0
BinaryV' falze Int\al 1]
WireSheet InputTo Binval falze
CL_MIN
CControls BASCZZ Web WC1S LimitSP 5
WcType Input func::Limiter
Kinval 0.0 Out 6.
Max\al 100.0 In 58.48
Fitval 70.0 LowLmt 50.0
Int\al 70 HighLmt 50.0
BinVal true
ZNL_SET I
CControls BASC2Z I0:UI2 Round1 » OHMS 4 Z_SETPT =
Initialized true math:: Round hvac:Reset hvac:Reset \
ChnType Resistance Out 3,650.5=— Out 3434.1B—|_Dut 58.
QutF 3650 4 S|y 3650459 f=—=|n 3650.5 In 348426
OutB false DecimalPlaces i InMlin 20.0 InKin 0.0
Qutl 3650 InMax 10440.0 InMax 10000.0
Reset false OutMin 0.0 DutMin 65.0

QutMax 10000.0 OuthMax 75.0

Example RTU Application
Integrator

Hardware-dependent, hardware-
independent and Tridium-release
components were assembled onto
wire sheets and interconnected to
create the logic for setpoint, mode,
heating and cooling, as well as
economizer control. A BACnet client
provided an occupancy schedule. By
adding an economizer, demand
control ventilation was obtained.

35

“H” Diagram of Typical Rooftop Unit
w/Economizer

Sedona provides the control while a BACnet client provides the supervision and graphics

36

HVAC Application Using Sedona

Rooftop unit (RTU) with two-stages of heating and cooling plus economizer
was upgraded to Sedona when the economizer was installed

37

sl \What is There to Like in Sedona?

= The Fraphical experience of selecting components, configuring parameters,
and Lnking components to create applications is easy to do and to explain
to others

= The technology is open source and supported by several companies so the
opportunity exists to share experiences

= A community exists of users who create applications and developers who
make components and virtual machines

= The technoIOﬁy is portable to other platforms and will run on a small
micro-controller or a powerful computer

= The opportunity exists to share in the exchange of custom components and
kits within the community

= Program debugging is fast because the affect of any change is seen

instantly
For those familiar with Tridium’s Niagara Framework,

learning Sedona Framework will require minimal effort.
38

= The best way to learn Sedona is to try it
by downloading SAE and connecting to
the SVM-PC that will run on your
computer and then create a program

= Community member Contemporary
Controls has a multi-part video series
on its website devoted to SAE

= There is ample help files in SAE that
explain the functioning of the
components

Teach Yourself Sedona

@ SAE Part 1: Introduction Video (8:50)
Introduction to the Sedona Application Editor (SAE) which allows graphical
and BASremote.

@ SAE Part 2: Variable Types Video (6:43)
This video introduces users to the different variable types in the Sedona A|

@ SAE Part 3: Logic Kit Video (9:07)
This video introduces users to the different components located within the
components.

@ SAE Part 4: Math Kit Video (9:11)
This video introduces users to the different components located within the
components.

@ SAE Part 5: Timers and Counters Video (13:28)
This video introduces users to the different timers and counters available t
time-critical routine can be implemented.

@ SAE Part 6: HVAC Kit Video (13:24)
This video introduces users to the different components located within the
as example applications created using the components.

@ SAE Part 7: Introduction to the Kit Manager Video (9:37)
This video introduces users to the Kit Manager and details how to install at

39

Thank You

EXPU

JAN30-FEB1
LAS VEGAS

2017 =

