
ESSENTIALS
 A TECHNICAL SUPPLEMENT TO CONTROL NETWORK

SEPTEMBER • OCTOBER 2009

 VOLUME 1 • ISSUE 4

 ® Contemporary Control Systems, Inc.

Mapping of Modbus Registers to BACnet®
Objects Using the BAS Remote
People have asked “what advantage does BACnet equip-
ment have over Modbus equipment?” The simple answer
is that BACnet equipment is discoverable while Modbus
equipment is not. What this means is that BACnet devices
are modeled as a collection of objects that are “network
visible.” By being able to view these BACnet objects and
by understanding their pre-defi ned properties, much can be
learned about the equipment. With Modbus, you will need to
consult a user’s manual to understand the meaning of the
Modbus registers. However, there is a way of creating
BACnet objects from Modbus registers using the BAS
Remote and some off-line confi guration programs. Because
Modbus equipment is popular, being able to integrate these
devices into a “single-seat BACnet system” is important.

Modbus Register Addressing
Modbus data is considered to be segregated into four
memory blocks—coils, discrete inputs, input registers and
holding registers. Each memory location in each block can
be accessed by a 16-bit address. Discrete inputs and coils
are considered to be 1-bit registers while input registers and
holding registers are 16-bit. A 32-bit register would require
two memory locations. Addressing practice has been to use
fi ve-digit decimal references with the leading digit signify-
ing a memory block as shown in Table 1. This approach is
simpler to understand but it only addresses 10,000 points or
registers instead of the 65,536 which are possible. However,
there are still plenty of points and registers to work with so
this representation was chosen for Modbus mapping.

 Memory Block Bits Access Address Range
 Coils 1 Read/Write 00001-09999
 Discrete inputs 1 Read-Only 10001-19999
 Input registers 16 Read-Only 30001-39999
 Holding registers 16 Read/Write 40001-49999
 Table 1—Common decimal representation of
 Modbus registers.

Modbus Device Addressing
Modbus slaves are addressed from 1-247 while address 0
reserved for the broadcast address. The BAS Remote
functions as the Modbus master and therefore has no
address assignment. There can be several Modbus devices
attached to the MB bus on the BAS Remote so each one
must be assigned a unique Modbus address. The range
of addresses has been restricted from 10-39 because
BACnet instance numbers will be automatically assigned
based upon Modbus device address and Modbus register
address to greatly reduce confi guration time. This also avoids
potential confl icts with any BAS Remote internal I/O.

Modbus Function Codes
In order to act upon the data within the Modbus memory
blocks a number of function codes have been defi ned.
However, not all Modbus devices support all the available
function codes. The BAS Remote supports the following
function codes shown in Table 2 which are adequate for
accessing common Modbus devices.

 Code Description
 1 Read coils
 2 Read discrete inputs
 3 Read holding registers
 4 Read input registers
 5 Write single coil
 6 Write single register
 15 Write multiple coils
 16 Write multiple registers
 Table 2—The BAS Remote supports the most common
 Modbus function codes

page 1

BACnet Objects
Looking at the four types of Modbus data and available
BACnet objects it is obvious that coils should be binary
outputs (BO) and discrete inputs should be binary inputs
(BI). Holding registers could be just about anything so
assigning them as analog outputs (AO) makes sense
because they can be read or written. Input registers can
only be read so they will be represented as an analog
input (AI) which is read-only.

BACnet Object Properties
The next step is to determine the required properties that
must be supported for these four objects and to learn
which properties must be confi gured. The abbreviated
conformance code table (Table 3) shows what properties
are required and what are optional.

 Property BI BO AI AO
 Object Identifi er R R R R
 Object Name R R R R
 Object Type R R R R
 Present Value R W R W
 Status Flags R R R R
 Event State R R R R
 Out of Service R R R R
 Polarity R R NA NA
 Units NA NA R R
 Priority Array NA R NA R
 Relinquish Default NA R NA R
 COV Increment NA NA O O
 Table 3—Abbreviated Conformance Code table.

 O means optional; R means required to be read;
 W means required to be read and written; NA means
 not applicable to this object

The Object Identifi er must be unique within the BAS Remote
regardless of the number of identical Modbus devices that
are attached to the MB bus. Likewise, the Object Name
must be unique within the BAS Remote. The Object Type
will be set accordingly to represent the register as BI, BO,
AI or AO. The Present Value represents the actual value
of the point being read or written to by the BAS Remote.
Status Flags, Event State and Out of Service need not
be confi gured. They are handled by the BAS Remote.
Polarity is a required property for binary points. It was
decided to preset all polarities to NORMAL so as to not
invert the state of the Modbus point. Units for analog points
need to be identifi ed but it is possible to indicate no units.
For output points the Priority Array and Relinquish Default
must be set. Priority Array is set when the Present Value
is written. The Present Value assumes the value of the
Relinquish Default when there is a null Priority Array.

The BAS Remote supports Change of Value (COV), so
the COV increment must be set on analog points that will
be subscribed.

The fi rst issue is to create a unique Object Instance for
each Modbus register in each attached Modbus device.
It was decided to combine the Modbus Device Address
with the Modbus register address. Modbus addresses have
been forced to reside within the 10-39 range so this number
will precede the register address. For example, there is a
Modbus device at address 10 and it has holding registers
40001 through 40005. Five objects would be created with
Object Instances 1040001 through 1040005. If we attach a
second identical Modbus device at the next Modbus device
address, the resulting Object Instances will range from
1140001-1140005. The Object Instance is combined with
the Object Type to create a unique Object Identifi er.

The next issue is the Object Name which must be unique.
Any unique name would work but it is recommended to
use the register description for the corresponding Modbus
register. For example, if register 40001 means the
“Voltage phase A to neutral,” that will be the name.
However, if a second identical Modbus device is added,
it will have the same name for that register which must
be avoided. The best way to make them unique is to
append a sequence number to all Object Names in order
to ensure their uniqueness. This can be accomplished
automatically by using the Project Builder tool from
Contemporary Controls.

Confi guration Tools
Contemporary Controls has developed two off-line
programs that will assist in confi guring Modbus register to
BACnet mapping. This fi rst is called the Modbus Profi le
Generator and the second is the Project Builder. Both can
be downloaded for free from the company’s web site. Once
the project is built, the resulting fi le can be uploaded to the
BAS Remote for execution.

Sedona Framework™ and Modbus Devices
With the BAS Remote 3.0, a Sedona Virtual Machine (SVM)
exists in the unit that will execute function block programs
developed with Sedona Workbench. Not only will BAS
Remote internal I/O appear as Sedona objects, the Modbus
registers mapped to BACnet will as well. By using the
Modbus expansion port on the BAS Remote, the total I/O
count being controlled by Sedona Framework can increase
greatly beyond the BAS Remote’s internal I/O.

 SEPTEMBER • OCTOBER 2009ESSENTIALS

page 2

